

The ADREA-HF CFD code An overview

Dr. A.G. Venetsanos

Environmental Research Laboratory (EREL) National Centre for Scientific Research "Demokritos", Greece venets@ipta.demokritos.gr

Computational Fluid Dynamics (CFD)

- It is well known that CFD is increasingly applied for consequence assessment studies and Regulation Codes and Standards (RCS) support
- Main reasons:
 - CFD has the ability to treat complex scenarios, which simpler integral tools cannot handle
 - CFD cost is relatively lower than experiments
 - CFD tools present generally realistic simulation times
 - CFD tools/models are increasingly validated against relevant release, dispersion and combustion phenomena

Slide 3

- CFD prediction of flow and dispersion of pollutants in complex geometry at local scale for consequence assessment of accidental releases under realistic conditions
- With applications in
 - Chemical industry
 - Petrochemical industry
 - Automotive industry
 - Hydrogen technologies
 - RCS support

- Handles multi-component mixtures of pollutants with air. Real physical properties can be used.
- Solves the 3d, time dependent fully compressible conservation equations for mixture mass, momentum, enthalpy and total component mass (one for each component)
- Pollutants can be in two-phase flow conditions. Liquid fractions are obtained based on Raoult's law. Slip velocity between liquid and gas phase is modeled
- Solid air thermal interaction by solving the 1d temperature equation inside the ground
- Handles dense, neutral and buoyant releases. Instantaneous and continuous releases. Subsonic and sonic jets.
- RANS turbulence modelling. Series of turbulence models available. Pollutant concentration fluctuations modeled
- Various wall function capabilities

Numerics

- Control volume discretization in Cartesian grids with porosity approach
- Accuracy (up 3rd order for convective terms and up to 2nd order in time)
- Very efficient Bi-CGStab solver with various types of preconditioners giving computing time nearly O(N)
- Parallel red-black solvers for shared memory machines
- Automatic time step increase/decrease procedures

Validation

- Dense gas
 - Thorney island 8 and 21. Instantaneous releases of Fr/N2 mixture without and with circular fence
 - EMU-C1 continuous CI release in a chemical plant
- Passive
 - EMU-A1 continuous release from the door of L-shape building
- Subsonic buoyant jets
 - Russian-2 H2 jet in 20m³ hermetically sealed cylinder
 - INERIS-6C H2 jet in 78m³ garage like gallery
 - Swain garage. He jet in 67m³ private parking with vehicle
 - GEXCON-D27 H2 jet in 0.2m³ compartmented enclosure
- Sonic buoyant jets
 - FZK tests. H2 jets at 100 and 160bar
 - HSL-7. H2 jet at 100bar
 - Osaka HRS. H2 jets at 400bar in the storage room of the Osaka H2 refuelling station
- Two-phase jets
 - EEC-55. C3H8 release on flat ground with and without fence
 - Burro 9 LNG release on water
 - Desert Tortoise 1. NH3 release on flat ground
 - BAM-5. LH2 release within buildings
 - NASA-6. LH2 release on flat ground with circular fence

GUI

- Environment
 - o Windows
- Pre-processing
 - Fast geometry introduction (primitive shapes, complex shapes, boolean operations between solids)
 - Import of geometry from (IGES, STEP, BREP, CSFDB)
 - Export of geometry to (IGES, BREP, STL, VRML, TECPLOT)
- Post-processing
 - In house post-processing
 - Export to TECPLOT

- No memory restrictions. Full dynamic memory allocations.
- Run can be stopped and restarted from where it stopped
- Run can read and interpolate results from previous ADREA-HF run on different grid
- User can write his own FORTRAN code and have access to the ADREA-HF internal code variables. User routines are called at the beginning of run and at end of each time step

- EIHP project (FP5)
 - H2 releases from private cars in tunnel
- EIHP2 project (FP5)
 - H2 releases from H2 bus in city and tunnel environments.
 Comparison to NG releases from NG bus
- Hong Kong project (Private Contract)
 - H2 releases from H2 bus in Hong Kong
- HYSAFE project (FP6, NoE)
 - H2 releases validation
- HYAPPROVAL project (FP6, STREP)
 - H2 releases from hydrogen refuelling stations
- HYPER project (FP6, STREP)
 - H2 releases from fuel cells in confined ventilated spaces

ADREA-HF applications

Slide 10

EIHP2 project:

CGH2 bus in a city

Taken from Venetsanos et al. (2007) J. Loss Prevention in the Process Industry, 21

ADREA-HF applications

H2, 35MPa, 30s, 2180m³, 32.5kg

FUEL	PRESSURE	ENERGY	FIREBALL	OVERPRESSURE
	(MPa)	(MJ)	Length Along The	Peak Overpressure
			Tunnel (m)	(kPa)
ЦЭ	20	3890	220ª	42.5
ПΖ	35	3900	285ª	150
NG	20	5380	198	45

Taken from Venetsanos et al. (2007) J. Loss Prevention in the Process Industry, 21

ADREA-HF applications

HyApproval project:

Examined scenarios

Taken from HyApproval Deliverable 4.6, 2007

HyApproval project:

Taken from HyApproval, NCSRD-JRC report, 2007

Hyper project:

Fuel Cell Leak

Fuel cell located inside naturally ventilated test facility

Naturally Ventilated Test Facility (CVE)

14.8g H2 released in 60 seconds

Location and Interior of Fuel Cell

Slide 15

www.demokritos.gr/erel

